<u>FINAL</u> ANNUAL MONITORING REPORT YEAR 4 (2012) CHAPEL CREEK STREAM RESTORTION SITE ORANGE COUNTY, NORTH CAROLINA (EEP Project No. 77, Contract No. 004806) Construction Completed July 2008

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

January 2013

<u>FINAL</u> ANNUAL MONITORING REPORT YEAR 4 (2012) CHAPEL CREEK STREAM RESTORTION SITE ORANGE COUNTY, NORTH CAROLINA (EEP Project No. 77, Contract No. 004806) Construction Completed July 2008

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

> Prepared by: Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

January 2013

Table of Contents

1.0 EXECUTIVE SUMMARY	. 1
2.0 METHODOLOGY	.3
2.1 Vegetation Assessment	.3
2.2 Stream Assessment	
3.0 REFERENCES	

Appendices

APPENDIX A. PROJECT VICINITY MAP AND BACKGROUND TABLES
Figure 1. Vicinity Map
Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Baseline Information and Attributes
APPENDIX B. VISUAL ASSESSMENT DATA
Figures 2 and 2A-2B. Current Conditions Plan View
Table 5. Visual Stream Morphology Stability Assessment Table
Table 6. Vegetation Condition Assessment Table
Stream Fixed-Station Photos
Vegetation Monitoring Plot Photos
APPENDIX C. VEGETATION PLOT DATA
Table 7. Vegetation Plot Criteria Attainment
Table 8. CVS Vegetation Plot Metadata
Table 9. Total and Planted Stems by Plot and Species
APPENDIX D. STREAM SURVEY DATA
Cross-section Plots
Longitudinal Profile Plots
Substrate Plots
Table 10a. Baseline Stream Data Summary
Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment
Parameter Distributions)
Table 11a. Monitoring Data – Dimensional Morphology Summary (Dimensional Parameters –
Cross Sections)
Table 11b. Monitoring Data – Stream Reach Data Summary
APPENDIX E. HYDROLOGY DATA
Table 12. Verification of Bankfull Events
2012 (Year 4) Groundwater Gauge Graphs
Figure 3. Annual Climatic Data vs. 30-year Historic Data
Table 13. Wetland Hydrology Criteria Attainment Summary

1.0 EXECUTIVE SUMMARY

The North Carolina Ecosystem Enhancement Program (NCEEP) has completed restoration of 1350 linear feet of stream at the Chapel Creek Stream Restoration Site (hereafter referred to as the "Site") to assist in fulfilling stream mitigation goals in the area. This report (compiled based on EEP's *Procedural Guidance and Content Requirements for EEP Monitoring Reports* Version 1.4 dated 11/7/11) summarizes data for year 4 (2012) monitoring.

The Site is located on University of North Carolina Chapel Hill property in Orange County, North Carolina. The Site is located in United States Geological Survey (USGS) Hydrologic Unit and Targeted Local Watershed 03030002060080 (North Carolina Division of Water Quality [NCDWQ] Subbasin 03-06-06) of the Cape Fear River Basin. The Site occurs within the lower Morgan Creek watershed planning area; the Morgan Creek Local Watershed Plan noted water quality degradation and impaired biological communities in the watershed and identified major watershed stressors as streambank erosion, excess stormwater runoff, and disturbed riparian buffers (NCEEP 2004).

The drainage area for Chapel Creek is approximately 0.42 square miles at the Site outfall where a channel that drains through the A.E. Finley Golf Course converges with Chapel Creek. The watershed land use consists of the University of North Carolina facilities, single family residential land, elementary schools, roadways, and forested land.

The goals of the restoration project focus on improving water quality in the Chapel Creek and the Cape Fear River watersheds by the following

- Restoring pattern, profile, and dimension to approximately 964 linear feet of Chapel Creek.
- Enhancing/stabilizing approximately 331 linear feet using a combination of Priority 2 and Priority 3 restoration approaches, excavating a bankfull bench and repairing stream banks.
- Restoring stable stream channels capable of transporting flows and sediment loads efficiently.
- Improving aquatic habitat by revegetating stream banks to increase shade and restoring sinuosity and riffle-pool complexes.
- Reducing sediment inputs by restoring stable stream channels and revegetating banks.

Prior to construction, the Site contained a degraded stream channel located within an abandoned portion of the A.E. Finley Golf Course that was regularly mowed and maintained. Site streams were characterized by entrenched, narrow, deep, step-pool channels with low to moderate sinuousity. Project construction was completed in July 2008. The project restored 964 linear feet of stream using Priority I restoration by constructing a new meandering channel within the floodplain and enhanced (level II) 331 linear feet using a combination of Priority 2 and Priority 3 restoration approaches by excavating a bankfull bench and repairing stream banks. Site activities provide 1095 Stream Mitigation Units. The Site will be protected by a permanent conservation easement held by the State of North Carolina.

Four vegetation monitoring plots were monitored on July 17, 2012 for year 4 (2012) monitoring. Vegetation success criteria dictate that an average density of 320 stems per acre must be surviving in the first three monitoring years. Subsequently, 290 stems per acre must be surviving in year 4 and 260 stems per acre in year 5. Stem counts will be based on an average of the evaluated vegetation plots. Based on the number of stems counted, average densities were measured at 749 planted stems per acre surviving in year 4 (2012). The dominant species identified at the Site were planted stems of river birch (*Betula nigra*), green ash (*Fraxinus pennsylvanica*), and southern arrowwood (*Viburnum dentatum*). All individual plots met success criteria based on planted stems alone.

Vegetation problem areas within the Site include the following (depicted on Figures 2A-2B, Appendix B). Currently, most invasive species within the Site are not affecting planted tree stem survival or growth and are therefore expected to be shaded out as planted trees mature; however, they will continue to be watched throughout the monitoring period. Invasive species controls were undertaken in August 2012 to treat Lespedeza within the Site.

Map Label*	Notes
VPA2	Lespedeza, planted trees and natural recruits are present
VPA3	Lespedeza, planted trees and natural recruits are present
VPA5	Sparse herbaceous
VPA7	Sparse herbaceous with numerous pine trees
VPA 9	Lespedeza
VPA10	Microstegium established where bench was excavated
VPA 11	Poor planted stems with some natural recruits of sweetgum and sycamore
VPA 12	A few privet present
VPA 14	Some lespedeza, mostly pine trees with elms and river birch
VPA 15	Chinese privet with scattered lespedeza, numerous river birch and iron wood present in this area
VPA 16	Lespedeza

*Map labels on Figures 2A-2B, Appendix B

Success criteria for stream restoration will be based on stream stability and assessed using measurements of stream dimension, pattern, and profile; site photographs; visual assessments; and vegetation sampling. Overall, the stream is functioning properly and emulates design/as-built conditions. In addition, stream success criteria will include documentation of two bankfull channel events during the monitoring period. In the event that less than two bankfull events occur during the first five years, monitoring will continue until the second event is documented. In addition, bankfull events must occur during separate monitoring years. A crest gauge is located within the Site to assist with documentation of bankfull events. One bankfull event was documented during the year 4 (2012) monitoring season for a total of five bankfull events with at least one event occurring in each monitoring year.

Stream problem areas within the Site include areas of minor bank erosion/scour and are not causing additional issues up or downstream. Stream problem areas were planted with 125 silky dogwood live stakes in January 2012. Many areas considered problems during previous monitoring years have recovered and vegetation has established; therefore, these areas are no longer considered problems. Stream problem areas are depicted on Figures 2A-2B (Appendix B) and include the following.

Station	Notes
1 + 40	Erosion and sedimentation under pedestrian bridge
2:25	Minor erosion and undercut bank on right bank; vegetation is establishing
5+10	Minor erosion on outer/right bank; vegetation is establishing
	1+40 2:25

*Map labels on Figures 2A-2B, Appendix B

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on EEPs website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.0 METHODOLOGY

2.1 Vegetation Assessment

Four vegetation plots were established and marked after construction with metal conduit demarking the four plot corners. The plots are 10 meters square or 5-meters by 20-meters and are located randomly within the Site. These plots were surveyed on July 17, 2012 for the year 4 (2012) monitoring season using the *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008) (http://cvs.bio.unc.edu/methods.htm); results are included in Appendix C. The taxonomic standard for vegetation used for this document was *Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas* (Weakley 2007).

2.2 Stream Assessment

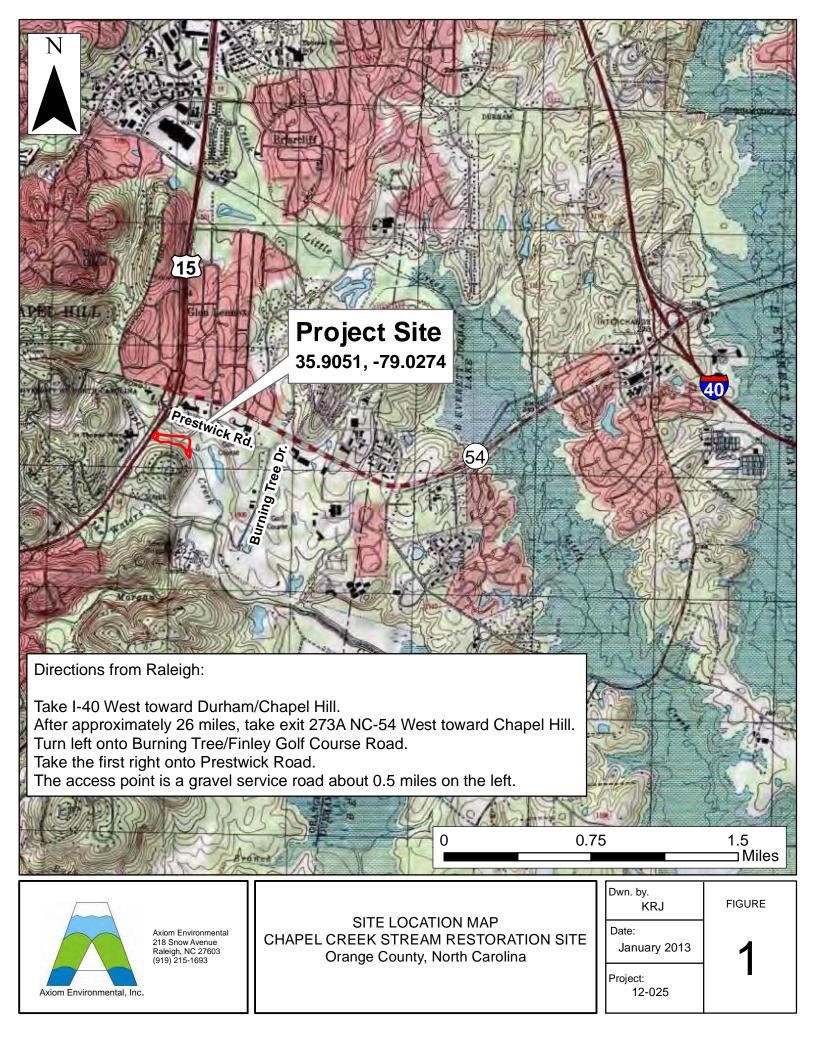
Annual stream monitoring was conducted the week of July 16, 2012. Five permanent cross-sections, four riffle and one pool, will be used to evaluate stream dimension; locations are depicted on Figures 2 and 2A-2B (Appendix B). Cross-sections are permanently monumented with metal conduit at each end point. Cross-sections will be surveyed annually to provide a detailed measurement of the stream and banks including points on the adjacent floodplain, top of bank, bankfull, breaks in slope, edge of water, and thalweg. Data will be used to calculate width-depth ratios, entrenchment ratios, and bank height ratios for each cross-section. In addition, photographs will be taken and pebble counts will be conducted at each permanent cross-section location annually.

One approximately 1300-linear foot monitoring reach will be used to evaluated stream pattern and longitudinal profile; locations are depicted on Figures 2 and 2A-2B (Appendix B). Measurement of channel pattern will include belt-width, and meander length. Subsequently, data will be used to calculate meander-width ratios. Longitudinal profile measurements will include average water surface slopes and facet slopes and pool-to-pool spacing. In addition, visual stream morphology stability assessments will be completed in each of the three monitoring reaches annually to assess the channel bed, banks, and instream structures (Tables 5A-5C, Appendix B).

3.0 REFERENCES

- Lee, Michael T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2. (online). Available: http://cvs.bio.unc.edu/methods.htm.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2004. Morgan Creek Local Watershed Plan Detailed Assessment Report. Available:

http://www.nceep.net/services/lwps/Morgan_Creek/MLCdata/DetailedAssessmentReport/MLCD etAssRep.pdf [July 2012]. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.


- Weakley, Alan S. 2007. Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas (online). Available: http://www.herbarium.unc.edu/WeakleysFlora.pdf [February 1, 2008]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.
- Weather Underground. 2012. Station at Chapel Hill (KGIX) in Chapel Hill, North Carolina. (online). Available: http://www.wunderground.com/history/airport/KIGX/2012/7/30/CustomHistory.html [July 30, 2012].

APPENDIX A

PROJECT VICINITY MAP AND BACKGROUND TABLES

Figure 1. Vicinity Map

- Table 1. Project Restoration Components
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Attributes Table

Table 1. Project Components and Mitigation Credits

Chapel Creek Stream Restoration Site (EEP Project Number 77)

		i Restoi ation sit			igation Credits					
		Str	eam			Riparian V	Vetland		Derfform	
Туре	R	estoration	Restoratio	n Equivalent	Restoratio	ion Restoration Equiva		alent	Buffer	
Totals		964	1	32						
				Projects Comp	onents					
Project Component/ Reach ID	Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Comment			
Reach 1	00+00- 09+94	964	P1	Restoration	994*	1:1	Priority I stream resto		ream restoration.	
Reach 2	09+94- 13+50	331	P2/P3	Enhancement (Level II)	356* 2.5:		Reach 2 consists of a mix of P2 and P3.		of P2 and P3.	
				Comp	onent Summation					
Restoration Level				Stream (linear footage) R		Riparia	Riparian Wetland (acres) B		(square footage)	
Restoration				964						
	Enhance	ment (Level II)		331						
	,	Totals			1295					
	Mitig	ation Units		109	96 SMUs					

*Site activities restored 994 linear feet of stream and enhanced 356 linear feet of stream; however, 30 linear feet of restoration (Stations 01+20-01+50) and 25 linear feet of enhancement (Stations 12+50-12+75) are excluded for pedestrian bridges and are not included in the SMU calculation.

Table 2. Project Activity and Reporting HistoryChapel Creek Stream Restoration Site (EEP Project Number 77)

Elapsed Time Since Grading Complete: 4 years 3 months Elapsed Time Since Planting Complete: 4 years 3 months Number of Reporting Years: 4

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Restoration Plan		August 2006
Final Design – Construction Plans		June 2007
Construction		July 2008
Temporary S&E mix applied to entire project area		July 2008
Permanent seed mix applied to enitre project area		July 2008
Repairs to stream due to damages from storm events		March 2009
Temporary S&E mix applied to area disturbed by repairs		March 2009
Permanent seed mix applied to area disturbed by repairs		March 2009
Containerized and B&B plantings for entire reach		March 2009
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	March 2009	March 2009
Year 1 Monitoring (2009)	September 2009	November 2009
Invasive species control		2010
Year 2 Monitoring (2010)	October 2010	November 2010
Year 3 Monitoring (2011)	August 2011	November 2011
Live Stake Installation		January 2012
Invasive species control (Lespedeza sp.)		August 2012
Year 4 Monitoring (2012)	July 2012	July 2012

Table 3. Project Contacts Table

Chapel Creek Stream Restoration Site (EEP Project Number 77)

221 Troject Number 77)					
Ward Consulting Engineers, P.C.					
8368 Six Forks Road Suite 104					
Raleigh, NC 27615-5083					
Becky Ward 919-870-0526					
River Works, Inc.					
800 Regency Parkway, Suite 200					
Cary, NC 27518					
Will Pederson 919-459-9001					
Level Cross Surveying, PLLC (all surveying)					
668 Marsh County Lane					
Randleman, NC 27317					
Sherie Willard 336-495-1713					
Green Resource 336-855-6363					
Ward Consulting Engineers, P.C.					
8368 Six Forks Road Suite 104					
Raleigh, NC 27615-5083					
Becky Ward 919-870-0526					
Axiom Environmental, Inc.					
218 Snow Avenue					

Table 4. Project Baseline Information and AttributesChapel Creek Stream Restoration Site (EEP Project Number 77)

	t Information			
Project Name	Chapel Creek Stream I	Restoration Site		
Project County	Orange County, North Carolina			
Project Area	5.15 acres			
Project Coordinates	35.9055°N, 79.0289°W	V		
	(near station $0+00$ at F			
Project Watershe	d Summary Informatio	,		
Physiographic Region	Piedmont			
Ecoregion	Triassic Basin			
Project River Basin	Cape Fear			
USGS 8-digit HUC	03030002			
USGS 14-digit HUC	03030002060080			
NCDWQ Subbasin	03-06-06			
Project Drainage Area	0.42 square miles			
Project Drainage Area Impervious Surface	9%			
Watershed Type	Urban			
	mary Information			
Parameters	Reach 1	Reach 2		
Restored/Enhanced Length	961 linear feet	356 linear feet		
Drainage Area	0.42 square miles	·		
NCDWQ Index Number	16-41-2-8			
NCDWQ Classification	WS-IV, NSW			
Valley Type/Morphological Description	VIII/C4			
Dominant Soil Series	Chewacla			
Drainage Class	Somewhat poorly drain	ned		
Soil Hydric Status	Nonhydric, may contai	in hydric Wehadkee inclusions		
Slope	0.0136	0.017		
FEMA Classification	100-year floodplain			
Native Vegetation Community	Piedmont/Low Mounta	ain Alluvial Forest		
Percent Composition of Exotic Invasives	5.4			
Regulator	y Considerations			
Regulation	Applicable			
Waters of the U.S. –Sections 404 and 401	Yes-Received Appropr	riate Permits		
Endangered Species Act	No			
Historic Preservation Act	No			
CZMA/CAMA	No			
FEMA Floodplain Compliance	*	d and confirmed by Sue Burke,		
	Floodplain Manager, 7	Town of Chapel Hill		
Essential Fisheries Habitat	No			

APPENDIX B

VISUAL ASSESSMENT DATA

Figures 2 and 2A-2B. Current Conditions Plan ViewTable 5. Visual Stream Morphology Stability Assessment TableTable 6. Vegetation Condition Assessment TableVegetation Monitoring Plot Photos

400 Marine		1 784445.7 1991562.8 784429.7 1991 2 784319.4 1991786.6 784320.5 1991 3 784216.3 1992146.0 784249.9 1992	Pin 3 Pin 4 sting Northing Easting 560.5 784422.8 1991625.7 78428.9 1991787.1 784287.1 211.3 784200.0 1992154.8 7830.8 783969.2 1992366.4	Chapel Chapel Stream Stream Top of E
	State	Figure 2A		Stream Cross-s Stream Pedestr Precons Vegetat Stream Proble
	1 30°		R S S S S S S S S S S S S S S S S S S S	Figure 2
			x so x so	
Cross Section Pin Coord Cross Section Left Pin Number Northing Eas 1 784445.1 19917 2 784371.4 19918 3 784355.6 19919 4 784268.3 19927 5 784072.4 19923	Right Pin ting Northing Easting '25.0 784315.4 1991615.7 118.4 784280.9 1991815.1 952.4 784249.4 1991915.3 92.8 784192.1 1992194.8			
2010 CGIA Leaf-off Aerial Photo 0 70 140		Feet 420 560		

Legend

Chapel Creek Easement Stream Restoration Stream Enhancement (Level II) Top of Bank Stream Stationing Cross-sections Stream Structures Pedestrian Bridges Preconstruction Channel Vegetation Plots Vegetation Problem Areas Stream Problem Areas Scoured/Eroded Bank

Axiom Environmental, Inc.

Prepared for:

Project:

CHAPEL CREEK STREAM RESTORATION SITE

> Orange County, NC

Title:

CURRENT CONDITIONS PLAN VIEW

(Overview Map)

Drawn by:

CLF/KJ

Date:

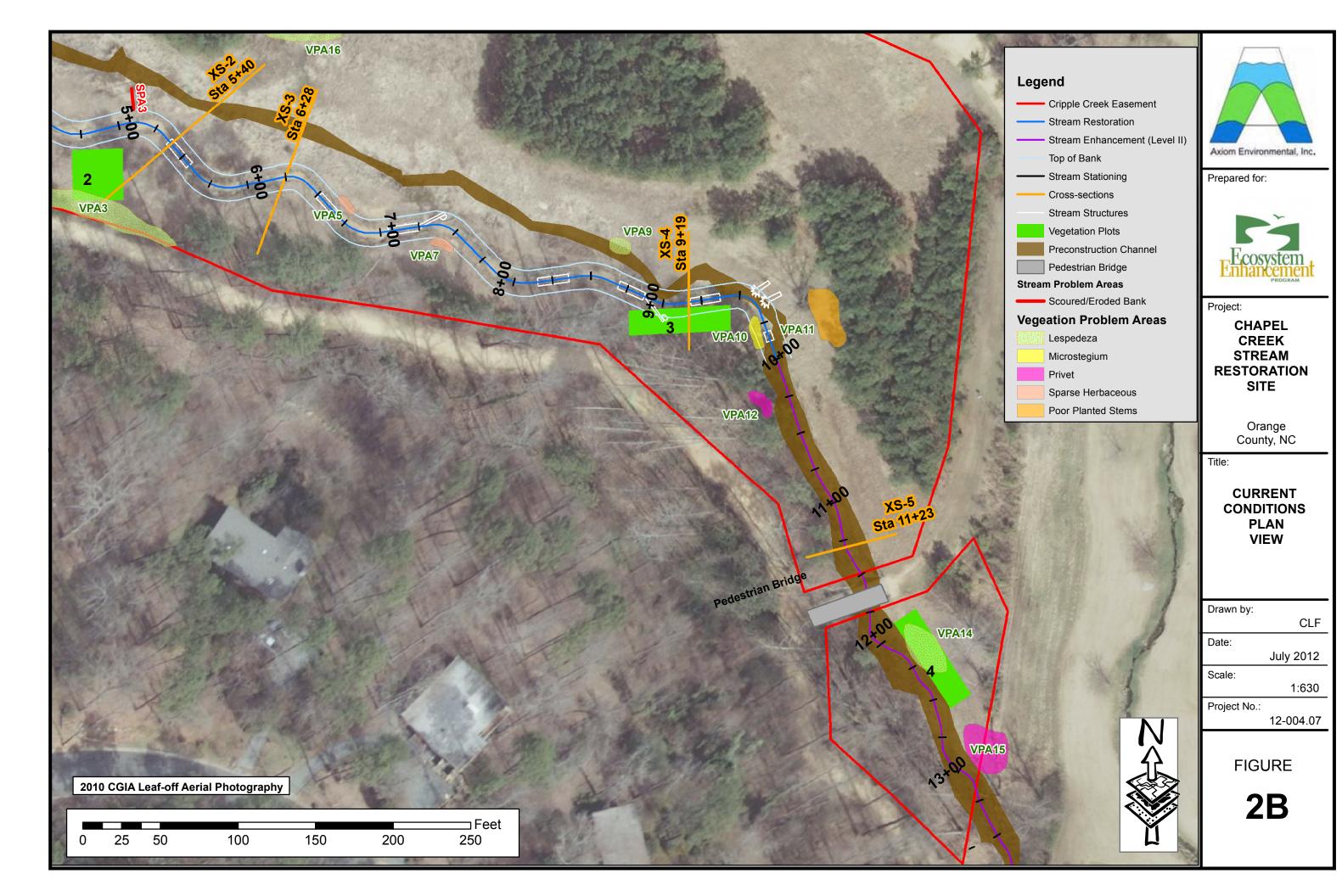
Scale:

July 2012

1:1200

Project No.:

12-004.07


FIGURE

2

St.

Visual Stream Morphology Stability Assessment

R

Reach 1 (Restoration)

Assessed Length

Reach 1 (Restoration) 961

	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 					100%			
		2. <u>Degradation</u> - Evidence of downcutting			1	20	98%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	17	17			100%			
1. Bed	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	17	17			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	17	17			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	16	17			94%			
		2. Thalweg centering at downstream of meander (Glide)	17	17			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	20	99%			99%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.					100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse					100%			100%
	-			Totals	2	20	99%	0	0	99%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8 8		100%				

Table 5 Reach ID

Table 6 Vegetation Condition Assessment

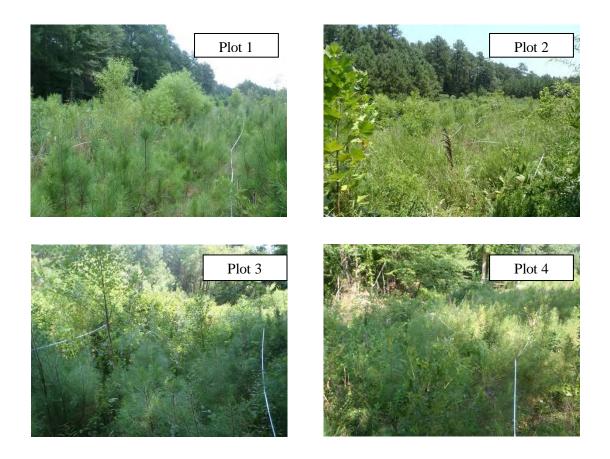
4

- 4 - 0

	~	~		-	
-					

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material. 0.1 acres Brown		Brown Line	0	0.00	0.0%
2. Low Stem Density Areas Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria. 0.1 acres Brown Line					0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Brown Line	0	0.00	0.0%
	mulative Total	0	0.00	0.0%		

Easement Acreage [*]	5.153					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	100 SF	Light green, yellow, and dark pink	8	0.28	5.4%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Brown Line	0	0.00	0.0%


1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likely trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extinsive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particularly for situations where the condition for an area is somewhere between isolated specimes and dense, placethes. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of species are listed below. Hereit is a species are becaused of the interest externe restructure of a state with any frequency.

Chapel Creek Vegetation Monitoring Photographs Taken July 17 2012

APPENDIX C

VEGETATION PLOT DATA

- Table 7. Vegetation Plot Criteria Attainment
- Table 8. CVS Vegetation Plot Metadata
- Table 9. Total and Planted Stems by Plot and Species

Chaper Creek Restoration Site (EEF 110ject Number 77)									
Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean							
1	Yes								
2	Yes	1000/							
3	Yes	100%							
4	Yes								

Table 7. Vegetation Plot Criteria AttainmentChapel Creek Restoration Site (EEP Project Number 77)

Table 8. CVS Vegetation Plot MetadataChapel Creek Restoration Site (EEP Project Number 77)

Chaper Creek Restor ation of	
Report Prepared By	Corri Faquin
Date Prepared	7/20/2012 12:02
database name	Axiom-EEP-2012-A.mdb
database location	C:\Axiom\Business\CVS
computer name	CORRI-PC
file size	40550400
DESCRIPTION OF WORKSHEE	TS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems,
Proj, total stems	and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are
ALL Stems by Plot and spp	excluded.
PROJECT SUMMARY	
Project Code	77
project Name	Chapel Creek
Description	
River Basin	Cape Fear
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	4

Table 9. Total Planted and Natural Recruits Stems by Plot and Species

Chapel Creek	·	•					C	urrent Plot D	ata (MY4	2012)								Annual Me	ans		L	
		Species		E77-01-00	01		E77-01-0	002		E77-01-000)3		E77-01-000	04		MY4 (2012)		MY3 (201	.1)		MY2 (201	10)
Scientific Name	Common Name	Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all 1	ſ	PnoLS P-all	Т	PnoLS	P-all	Т
Alnus serrulata	hazel alder	Shrub									64						64		45			63
Baccharis halimifolia	eastern baccharis	Shrub			8	3		6	6		17			6			37	,	44			17
Betula nigra	river birch	Tree			1	2	2	2 2	2	3 3	3 3	6	6 6	<mark>6</mark> 86	11	1 11	92	: 11 [·]	1 293	12	2 1	12 318.6667
Calycanthus	sweetshrub	Shrub																	1		1	1 1
Calycanthus floridus	eastern sweetshrub	Shrub										1	1 1	1 1	1	1 1	1	1	1 1			
Carpinus caroliniana	American hornbeam	Tree				1	1	1 2	2		58	2	2 2	2 2	3	3 3	62	2	2 2		2	2 65.5
Carya	hickory	Tree									8						8					
Cephalanthus occidentalis	common buttonbush	Shrub		_						1 1	1				1	1 1	1			· · ·	<u> </u>	1 1
Cercis canadensis	eastern redbud	Tree		_							-		-						284			
Cornus amomum	silky dogwood	Shrub		_						2 2	2 2				2		2	2	2 2			
Diospyros virginiana	common persimmon	Tree		1	1 1	3	3	3 3	3	1 1	1				5	o 5	5	5	5 5	, (3	9 10
Elaeagnus umbellata	autumn olive	Exotic							<u> </u>	-				-		<u> </u>			2			1
Fraxinus pennsylvanica	green ash	Tree		_	6	6 Z	4	4 4	-	2 2	2 2	6	6 6	6 6	12		18	13 '	3 19	13	3 1	13 15
Hibiscus moscheutos	crimsoneyed rosemallow		ł	5	5 5				I						5	o 5	5	5	5 5		<u>د</u>	5 5
Juglans nigra	black walnut	Tree					-															2
Ligustrum sinense	Chinese privet	Exotic					_												3			1
Lindera benzoin	northern spicebush	Shrub					_			4 4	4	· 1	1	1 1	5	5 5	5	6	6 6	((<u>}</u>	9 6
Liquidambar styraciflua	sweetgum	Tree		_	2	-		1			76			45			124		285			94
Liriodendron tulipifera	tuliptree	Tree		_							2			18			20		12			
Magnolia virginiana	sweetbay	Tree		1	1 1										1	1 1	1	1	1 1	3	3	3 3
Morella cerifera	wax myrtle	shrub		_							1			7			8		13			6
Pinus taeda	loblolly pine	Tree			68	3		2	2		73			56			199		527			178
Platanus occidentalis	American sycamore	Tree				3	3	3 3	3	1 1	1				4	1 4	4	. 4	4 5		3	3 7
Prunus serotina	black cherry	Tree					_												5		<u> </u>	
Quercus lyrata	overcup oak	Tree										2	2 2	2 2	2	2 2	2	2	2 2			
Quercus nigra	water oak	Tree				1	1	1 1							1	1	1	1	1 1	3	3	3 3
Quercus phellos	willow oak	Tree					_												1		<u> </u>	
Rosa multiflora	multiflora rose	Exotic		-	_		_												2			1
Rosa palustris	swamp rose	Shrub		5	5 5	5									5	5 5	5	5	5 5	i t	<u>;</u>	5 5
Salix nigra	black willow	Tree			16	6	_										16	3	69		<u> </u>	52
Ulmus	elm	Tree		_	1												1		5			
Ulmus alata	winged elm	Tree					-															2
Vaccinium corymbosum	highbush blueberry	Shrub		1	1 1		_								1	1	1	1	1 1	· · · · ·	<u> </u>	1 1
Viburnum	viburnum	shrub					_			_									_			2
Viburnum dentatum	southern arrowwood	Shrub		1	1 1				1	3 13	3 13				14	4 14	14		5 15	5 15		15 15
Viburnum nudum	possumhaw	Shrub		_						1 1	1		-		1	1 1	1	2	2 2	2	2	2 2
Xanthorhiza simplicissima	yellowroo	Shrub																1	1 1	· · · · ·	<u> </u>	1 1
	9	Stem count	14	-	4 116	6 14	4	14 24	2	-	3 327	18	8 18	8 230	74	4	697	4	7 1664	85		85 881.1667
		size (ares)		1		I	1		I	1		ļ	1			4		4		ļ	4	
		ize (ACRES)		0.02		I	0.02	-	I	0.02		I	0.02	1		0.10		0.10		ļ	0.10	
	•	ecies count		6	6 13	3 6	5	6 9	, 	9 9	9 17	,	,	6 11	17		26		7 32		-	16 28
	Stem	ns per ACRE	566.559	<mark>9</mark> 566.559	9 4694.353	566.5599	9 566.55	99 971.2455	1133.1	<mark>2</mark> 1133.12	2 13233.22	728.4342	2 728.4342	2 9307.77	748.6684	4 748.6684	7051.647	779.0199 779.019	9 16834.92	859.957	<mark>7</mark> 859.95	57 8914.887

Color for Density

PnoLS = Planted stems excluding livestakes

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

P-all= Planted stems including livestakes T = Planted stems and natural recruits

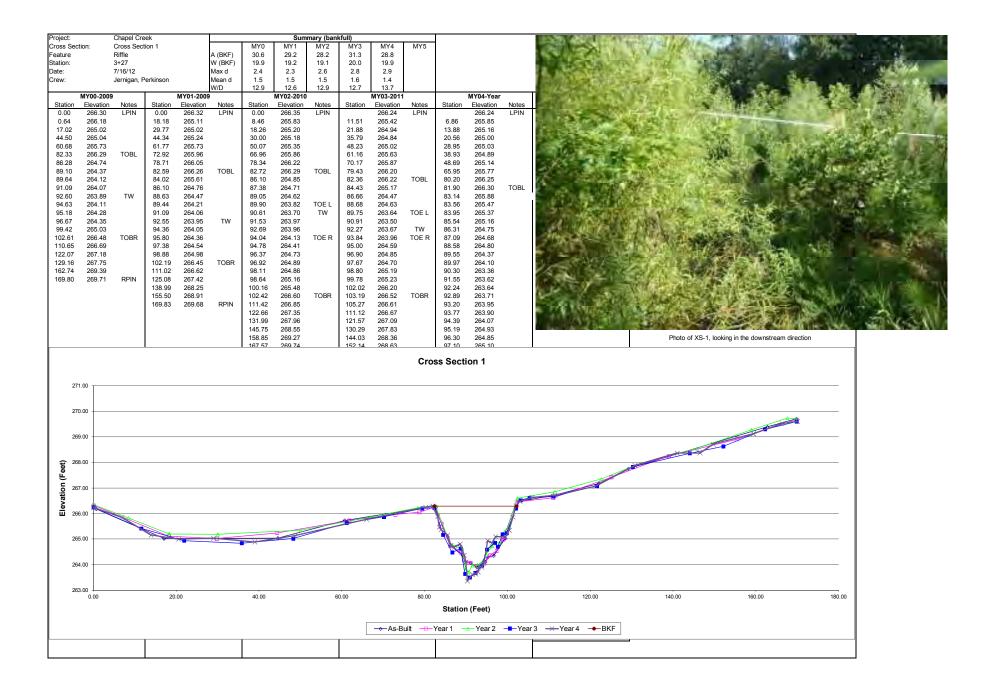
Total includes stems of natural recruits

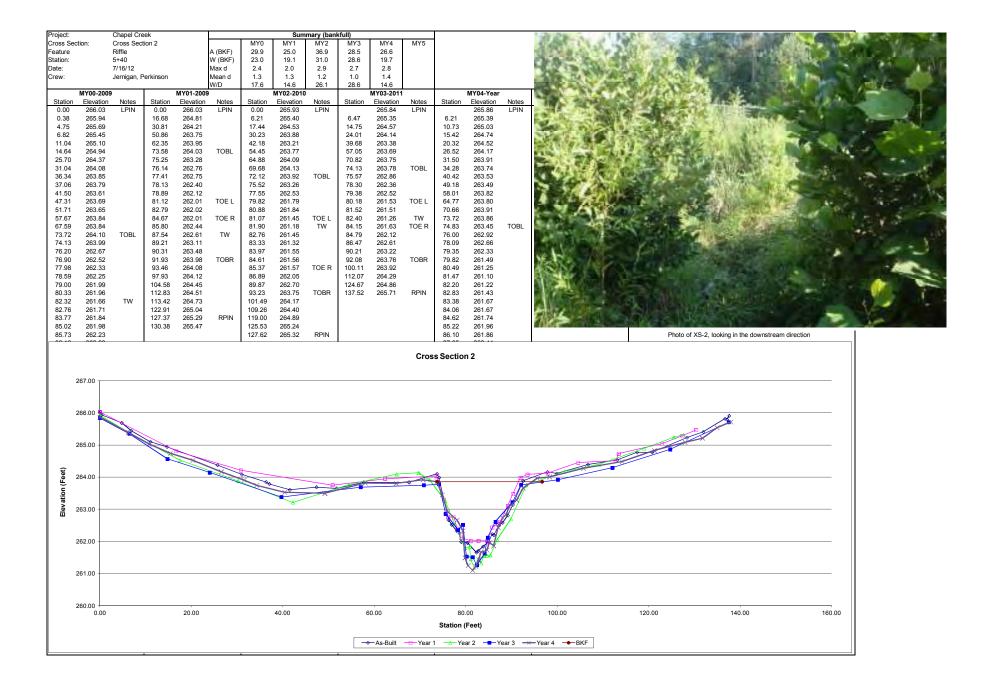
Fails to meet requirements, by less than 10%

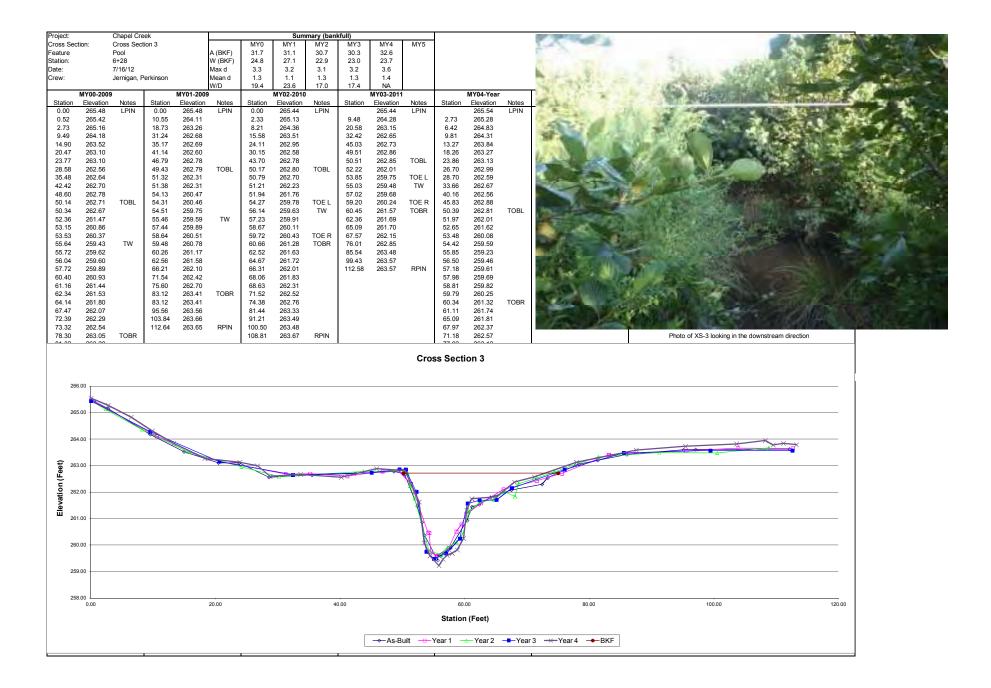
0% Total includes

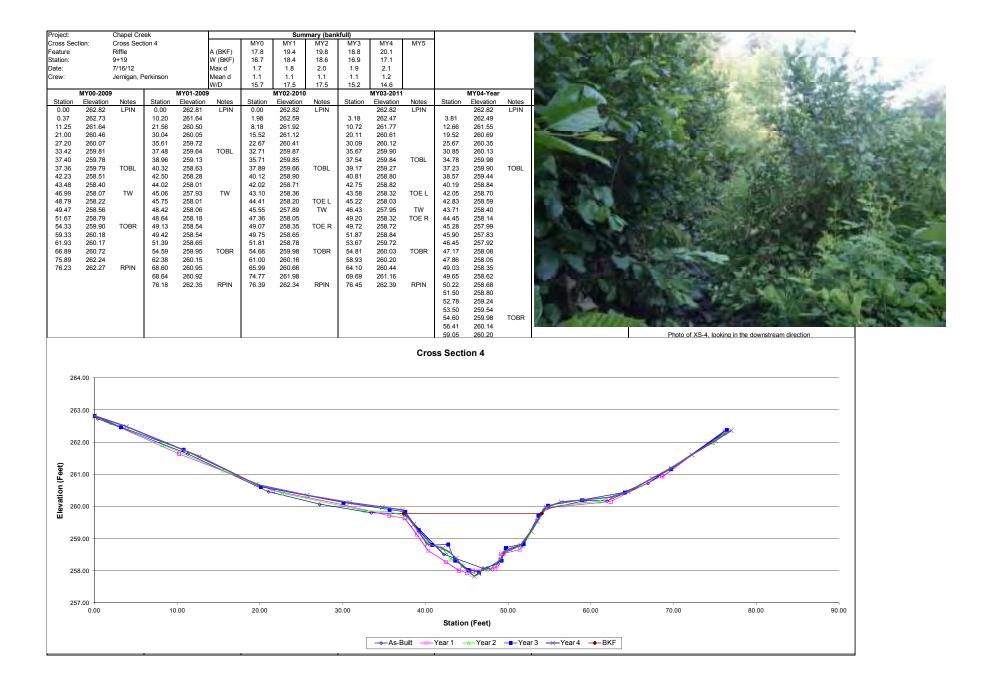
APPENDIX D

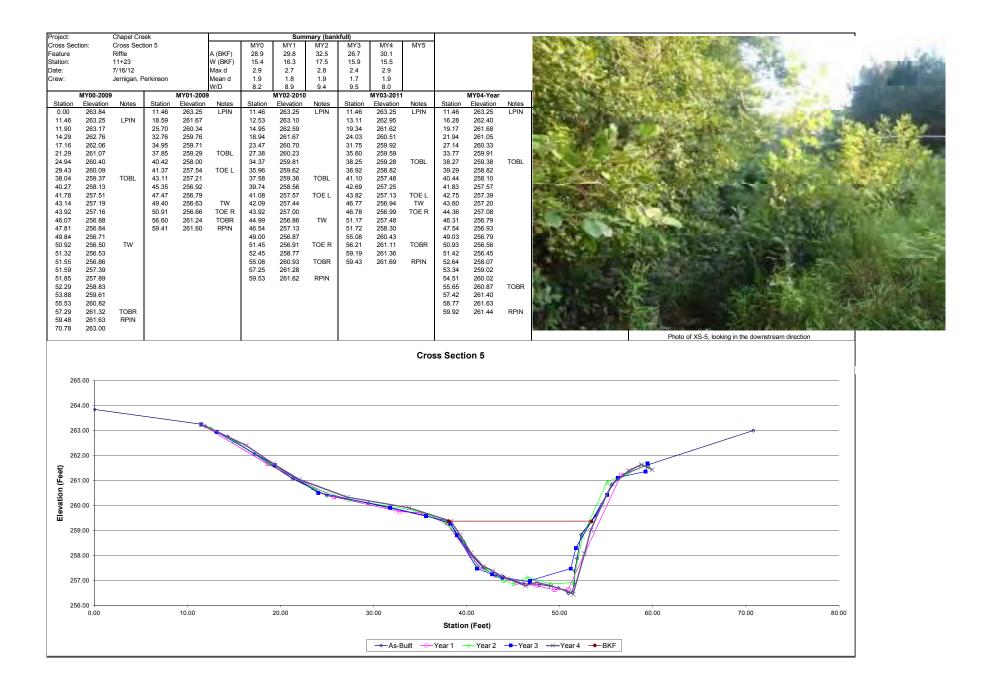
STREAM SURVEY DATA

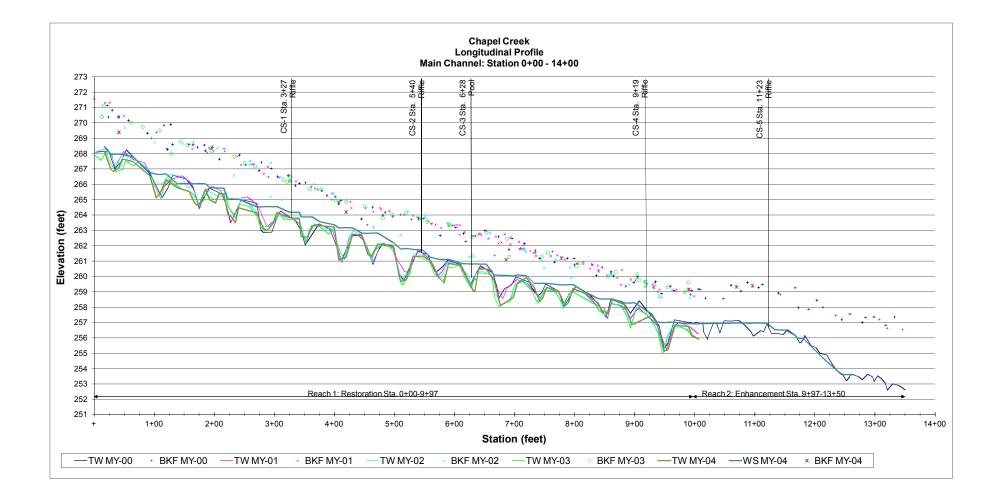

Cross-section Plots

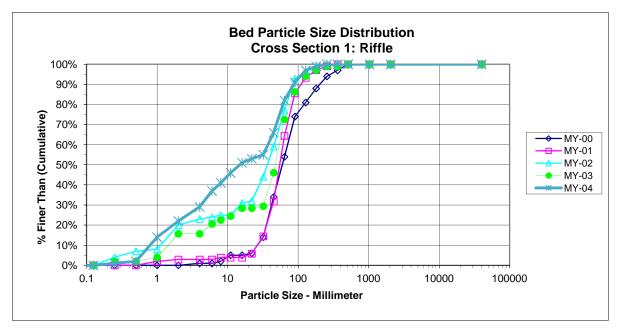

Longitudinal Profile Plots

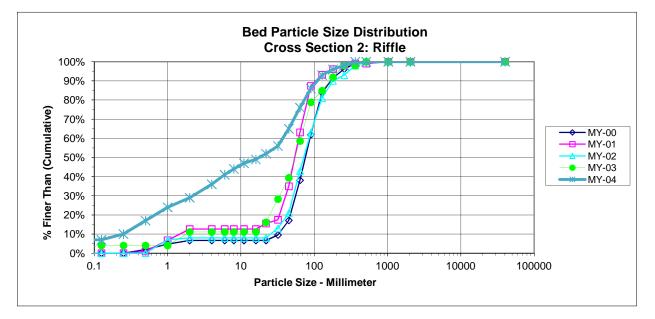

Substrate Plots


Tables 10a-b. Baseline Stream Data Summary

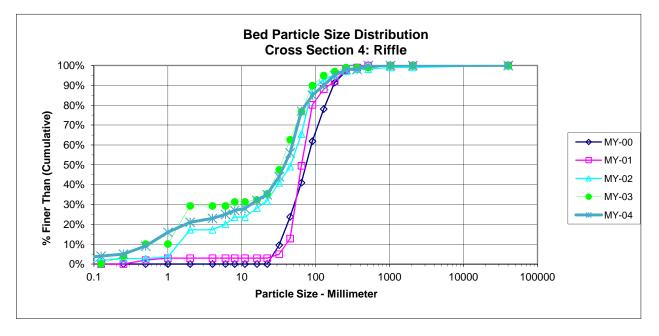

Tables 11a-b. Monitoring Data



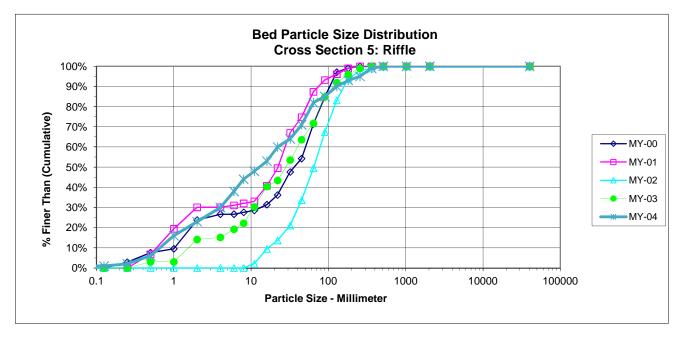



			PEBBLE C	OUNT				
Project:	Chapel Cre					Date:	7/26/2012	
Location:	Cross Sect	ion #1						
					Counts		-	-
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%
	Very Fine	.062125	S	0	0	0	0%	0%
	Fine	.12525	Α	1	0	1	1%	1%
	Medium	.2550	Ν	1	0	1	1%	2%
	Coarse	.50 - 1.0	D	12	0	12	12%	14%
.0408	/ery Coarse	1.0 - 2.0	S	8	0	8	8%	22%
.0816	Very Fine	2.0 - 4.0		7	0	7	7%	29%
.1622	Fine	4.0 - 5.7	G	8	0	8	8%	37%
.2231	Fine	5.7 - 8.0	R	4	0	4	4%	41%
.3144	Medium	8.0 - 11.3	Α	5	0	5	5%	46%
.4463	Medium	11.3 - 16.0	V	5	0	5	5%	51%
.6389	Coarse	16.0 - 22.6	E	2	0	2	2%	53%
.89 - 1.26	Coarse	22.6 - 32.0	L	2	0	2	2%	55%
		32.0 - 45.0	S	11	0	11	11%	66%
1.77 - 2.5	/ery Coarse	45.0 - 64.0		16	0	16	16%	82%
2.5 - 3.5	Small	64 - 90	С	9	0	9	9%	91%
3.5 - 5.0	Small	90 - 128	0	6	0	6	6%	97%
5.0 - 7.1	Large	128 - 180	В	2	0	2	2%	99%
7.1 - 10.1	Large	180 - 256	L	1	0	1	1%	100%
10.1 - 14.3	Small	256 - 362	В		0	0	0%	100%
14.3 - 20	Small	362 - 512	L		0	0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	rg- Very Lr	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	100	0	100	100%	100%

d16	d35	d50	d84	d95
1.2	5.4	14.8	69.0	113.8


			PEBBLE C	OUNT				
Project:	Chapel Cre					Date:	7/26/2012	
Location:	Cross Sect	ion #2						
					Counts			
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	7	0	7	7%	7%
	Very Fine	.062125	S	0	0	0	0%	7%
	Fine	.12525	Α	3	0	3	3%	10%
	Medium	.2550	Ν	7	0	7	7%	17%
	Coarse	.50 - 1.0	D	7	0	7	7%	24%
.0408	/ery Coarse	1.0 - 2.0	S	5	0	5	5%	29%
.0816	Very Fine	2.0 - 4.0		7	0	7	7%	36%
.1622	Fine	4.0 - 5.7	G	5	0	5	5%	41%
.2231	Fine	5.7 - 8.0	R	3	0	3	3%	44%
.3144	Medium	8.0 - 11.3	Α	3	0	3	3%	47%
.4463	Medium	11.3 - 16.0	V	2	0	2	2%	49%
.6389	Coarse	16.0 - 22.6	E	3	0	3	3%	52%
.89 - 1.26	Coarse	22.6 - 32.0	L	4	0	4	4%	56%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	9	0	9	9%	65%
1.77 - 2.5	Very Coarse	45.0 - 64.0		11	0	11	11%	76%
2.5 - 3.5	Small	64 - 90	С	10	0	10	10%	86%
3.5 - 5.0	Small	90 - 128	0	7	0	7	7%	93%
5.0 - 7.1	Large	128 - 180	В	3	0	3	3%	96%
7.1 - 10.1	Large	180 - 256	L	2	0	2	2%	98%
10.1 - 14.3	Small	256 - 362	В	2	0	2	2%	100%
14.3 - 20	Small	362 - 512	L	0	0	0	0%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	.rg- Very Lr	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	100	0	100	100%	100%

d16	d35	d50	d84	d95
0.5	3.6	17.8	84.1	160.7


			PEBBLE C	OUNT				
Project:	Chapel Cre					Date:	7/26/2012	
Location:	Cross Sect	tion #4						
				Particle			-	
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	3	0	3	3%	3%
	Very Fine	.062125	S	1	0	1	1%	4%
	Fine	.12525	Α	1	0	1	1%	5%
	Medium	.2550	Ν	4	0	4	4%	9%
	Coarse	.50 - 1.0	D	7	0	7	7%	16%
.0408	/ery Coarse	1.0 - 2.0	S	5	0	5	5%	21%
.0816	Very Fine	2.0 - 4.0		2	0	2	2%	23%
.1622	Fine	4.0 - 5.7	G	2	0	2	2%	25%
.2231	Fine	5.7 - 8.0	R	2	0	2	2%	27%
.3144	Medium	8.0 - 11.3	А	1	0	1	1%	28%
.4463	Medium	11.3 - 16.0	V	4	0	4	4%	32%
.6389	Coarse	16.0 - 22.6	E	3	0	3	3%	35%
.89 - 1.26	Coarse	22.6 - 32.0	L	9	0	9	9%	44%
1.26 - 1.77	/ery Coarse	32.0 - 45.0	S	12	0	12	12%	56%
1.77 - 2.5	/ery Coarse	45.0 - 64.0		21	0	21	21%	77%
2.5 - 3.5	Small	64 - 90	С	8	0	8	8%	85%
3.5 - 5.0	Small	90 - 128	0	5	0	5	5%	90%
5.0 - 7.1	Large	128 - 180	В	5	0	5	5%	95%
7.1 - 10.1	Large	180 - 256	L	3	0	3	3%	98%
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	98%
14.3 - 20	Small	362 - 512	L	2	0	2	2%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	.rg- Very Lr	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	100	0	100	100%	100%

d16	d35	d50	d84	d95
1.0	22.0	37.9	86.2	180.0

-			PEBBLE C	OUNT				
Project:	Chapel Creek					Date:	7/26/2012	
Location:	Cross Section	#5						
					Counts		14 04	
Inches	Particle	Millimeter	0/0	Riffles	Pools	Total No.	Item %	% Cumulative
	Silt/Clay	< 0.062	S/C	1	0	1	1%	1%
	Very Fine	.062125	S	0	0	0	0%	1%
	Fine	.12525	Α	1	0	1	1%	2%
	Medium	.2550	Ν	4	0	4	4%	6%
	Coarse	.50 - 1.0	D	10	0	10	10%	16%
.0408	Very Coarse	1.0 - 2.0	S	7	0	7	7%	23%
.0816	Very Fine	2.0 - 4.0		7	0	7	7%	30%
.1622	Fine	4.0 - 5.7	G	8	0	8	8%	38%
.2231	Fine	5.7 - 8.0	R	6	0	6	6%	44%
.3144	Medium	8.0 - 11.3	Α	4	0	4	4%	48%
.4463	Medium	11.3 - 16.0	V	5	0	5	5%	53%
.6389	Coarse	16.0 - 22.6	Е	7	0	7	7%	60%
.89 - 1.26	Coarse	22.6 - 32.0	L	4	0	4	4%	64%
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	7	0	7	7%	71%
1.77 - 2.5	Very Coarse	45.0 - 64.0		11	0	11	11%	82%
2.5 - 3.5	Small	64 - 90	С	3	0	3	3%	85%
3.5 - 5.0	Small	90 - 128	0	5	0	5	5%	90%
5.0 - 7.1	Large	128 - 180	В	3	0	3	3%	93%
7.1 - 10.1	Large	180 - 256	L	2	0	2	2%	95%
10.1 - 14.3	Small	256 - 362	В	4	0	4	4%	99%
14.3 - 20	Small	362 - 512	L	1	0	1	1%	100%
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%
	Bedrock		BDRK	0	0	0	0%	100%
			Totals	100	0	100	100%	100%

d16	d35	d50	d84	d95
1.0	5.2	12.8	80.3	256.0

						Ch					am Da			77											
Parameter	Gauge ²	Pog	ional C				•	g Cond		Restor	ation S			each(es) Data			Design			Mo	nitorin	a Basol	ine	
raianetei	Gauge	Rey		uive	-	Fie-	Existin	y conu				Refere	ence Re	each(es) Dala			Design			WIO	mitorini	y Dasei	IIIe	
Dimension and Substrate -Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)	-	-	-	-	9.5	12.7	-	16.3	-	-	16.2	16.7	-	21.1	-	-	-	17.5	-	19.9	20.7	20.5	21.6	0.89	3
Floodprone Width (ft)					18	24.7	-	35	-	-	58	97	-	120	-	-	61	102	126	61	184	224	266	108	3
Bankfull Mean Depth (ft)	-	-	-	-	1.4	1.7	-	1.9	-	-	1.3	1.6	-	1.7	-	-	-	1.59	-	0.87	1.2	1.1	1.5	0.34	3
¹ Bankfull Max Depth (ft)	-				2.8	3.2	-	3.8	-	-	2.2	2.3	-	2.5	-	-	2.3	2.4	2.5	1.8	2.2	2.3	2.4	0.34	3
Bankfull Cross Sectional Area (ft ²)	-	-	-	-	17.5	21.6	-	29.2	-	-	27.2	27.5	-	27.8	-	-	-	27.8	-	18.9	24.1	22.7	30.6	6	3
Width/Depth Ratio	-				5	4.6	-	9.1	-	-	9.6	10.2	-	16	-	-	-	11	-	12.9	18.7	18.5	24.8	0.89	3
Entrenchment Ratio	-				1.5	2.1	-	3.2	-	-	3.5	5.8	-	7.2	-	-	3.5	5.8	7.2	2.8	9	11.3	13	5.5	3
¹ Bank Height Ratio	-				1.7	3.3	-	4.4	-	-	1.5	1.6	-	1.7	-	-	-	1	-	1	1	1	1	0	3
Profile																									
Riffle Length (ft)					3.5	6.8	-	13	-	-	7	21.2	-	42	-	-	7	21.2	42	13.7	23.1	22.91	36.6	6.2	17
Riffle Slope (ft/ft)					0	0.01	-	0.05	-	-	0	0.03	-	0.1	-	-	0	0.03	0.1	0	0.02	0.02	0.05	0.01	17
Pool Length (ft)					6	6.5	-	7	-	-	6.4	13.2	-	19.4	-	-	6.5	13.2	19.4	26.8	34.2	34.3	40.8	4.7	16
Pool Max depth (ft)					2.1	2.7	-	3.5	-	-	2.5	3	-	4.2	-	-	2.5	3	4.2	2.5	3.8	4	4.7	0.7	16
Pool Spacing (ft)					16	42	-	91	-	-	41	56	-	78	-	-	40	55	75	40	56	54	71	9.1	15
Pattern																									
Channel Beltwidth (ft)					15	17.7	-	20	-	-	28.7	22	-	40	-	-	21.2	27.6	38.5	31.9	43.8	40.9	75.9	10.9	14
Radius of Curvature (ft)					14.6	23.4	-	30.1	-	-	10.6	20	-	38.2	-	-	10.2	19.3	36.8	23.7	44.6	42.9	66.7	12.1	13
Rc:Bankfull width (ft/ft)					1.2	1.9	-	2.4	-	-	0.58	1.1	-	2.1	-	-	0.58	1.1	2.1	1.1	2.2	2.1	66.7	0.59	13
Meander Wavelength (ft)					55	58.3	-	65	-	-	113	125	-	140	-	-	109	120	135	90	104	104	121	9.1	13
Meander Width Ratio					1.2	1.43	-	1.62	-	-	1.2	1.6	-	2.2	-	-	1.2	1.6	2.2	1.6	2.2	2.1	2.8	0.55	14
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							0.	98										-					-		
Max part size (mm) mobilized at bankfull							1:	20										-					-		
Stream Power (transport capacity) W/m ²								-										-					-		
Additional Reach Parameters																									
Rosgen Classification	-						G	64					C4	/E4				C4				С	:4		
Bankfull Velocity (fps)	-	-	-	-			6.	83										5.8				6.	92		
Bankfull Discharge (cfs)	-	-	-	-			10	60																	
Valley length (ft)							8	70					3	50											
Channel Thalweg length (ft)							9	57					4(00				994				99	94		
Sinuosity (ft)							1.	06					1.	14				1.14			1.	14			
Water Surface Slope (Channel) (ft/ft)	-							-						-				-		0.0105					
BF slope (ft/ft)	-						0.0	128					0.0	011				0.012				0.0	111		
³ Bankfull Floodplain Area (acres)								-						-				-					-		
⁴ % of Reach with Eroding Banks								-						-											
Channel Stability or Habitat Metric								-						-											
Biological or Other								-						-											

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Chapel Creek Stream Restoration-Project No. 77 Reach 1 (961 feet)

Parameter		Pre	e-Exis	ting C	ondit	ion		Refe	rence	Reac	h(es)	Data		0	esign			As-bu	ilt/Ba	seline	
¹ Ri% / Ru% / P% / G% / S%													37%	61%			41%	57%			
¹ SC% / Sa% / G% / C% / B% / Be%																					
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	1.6	7.2	11.7	22	30.3		0.39	1.3	11.4	69.8	164.9										
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																					
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																					

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions. ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these bubsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the reach. This means that the distributions for these parameters, hereby providing that from both the cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, hereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 11a.	Monit	oring	Data -	Dime	nsiona	al Mor	pholo	gy Sur	nmary	(Dime	ensior	nal Par	amete	ers – C	ross s	Sectio	ns)				
		Ch	napel (Creek	Strear	n Rest	toratio	on-Pro	ject N	o. 77	Reach	1 (96 ⁻	1 feet)								
			Cross S	ection '	1 (Riffle))				Cross S	ection 2	2 (Riffle)					Cross S	Section	3 (Pool)		
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	266.29	266.26	266.29	266.29	266.25			264.00	264.01	264.00	264.00	263.86			262.67	262.79	262.67	262.67	262.81		
Bankfull Width (ft)	19.86	19.17	19.07	19.99	19.9			22.96	19.11	31.02	28.57	19.7			24.84	27.12	22.88	22.96	23.7		
Floodprone Width (ft)	224	224	224	224	224			266	266	266	266	266			95	95	95	95	95		
Bankfull Mean Depth (ft)	1.5416	1.5241	1.4766	1.5681	1.4			1.3016	1.3078	1.1881	0.9971	1.4			1.2771	1.1481	1.3418	1.321	1.4		
Bankfull Max Depth (ft)	2.4	2.31	2.59	2.79	2.9			2.44	2.02	2.95	2.74	2.8			3.28	3.2	3.07	3.19	3.6		
Bankfull Cross Sectional Area (ft ²)	30.619	29.221	28.165	31.346	28.8			29.886	24.998	36.858	28.483	26.6			31.724	31.14	30.694	30.335	32.6		
Bankfull Width/Depth Ratio					13.7			17.641	14.616	26.112	28.65	14.6			19.45	23.625	17.048	17.383	NA		
Bankfull Entrenchment Ratio	11.278	11.684	11.743	11.206	11.3			11.585	13.916	8.5742	9.3118	13.5			3.8245	3.5025	4.153	4.137	NA		
Bankfull Bank Height Ratio	1	1	1	0.914	1.0			1	0.6782	0.8712	0.9124	1.0			1	1	0.5375	0.6552	1.0		
Cross Sectional Area between end pins (ft ²)	339.13	327.85	321.93	328.30				245.58	193.07	211.96	242.96				188.14	186.78	186.23	180.07			
d50 (mm)	60.2	55.6	37.2	47.8	14.8			77	55.2	73.1	55.5	17.8			N/A	N/A	N/A	N/A	N/A		
· · · · · · · · · · · · · · · · · · ·			Cross S	ection 4	4 (Riffle)					Cross S	ection	5 (Riffle)									
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+							
Record elevation (datum) used	259.85	259.80	259.85		259.89				259.29	259.37		259.38									
Bankfull Width (ft)		18.41	18.64	16.92	17.1			15.35	16.33	17.52	15.93	15.5									
Floodprone Width (ft)	92	92	92	92	92			48	48	48	48	48									
Bankfull Mean Depth (ft)					1.2					1.8573	1.6769	1.9									
Bankfull Max Depth (ft)		1.79	1.96	1.9	2.1			2.87	2.66	2.76	2.43	2.9									
Bankfull Cross Sectional Area (ft ²)					20.1			28.895		32.549	26.709	30.1									
Bankfull Width/Depth Ratio					14.6						9.4979	8.0									
Bankfull Entrenchment Ratio			4.9353 0.9031		5.4 1.0			3.1269	2.9398	2.739 0.9058	3.0137	3.1 1.0									
Bankfull Bank Height Ratio Cross Sectional Area between end pins (ft ²)			165.78		1.0			131.28	135.96		0.963	1.0									
Cross Sectional Area between end pins (it) d50 (mm)		64.4	46.1	34.2	37.9			36.6	22.3	64.8	28.5	12.8									
d50 (mm)	75.8	04.4	40.1	34.2	37.9			30.6	22.3	04.8	28.5	12.8									

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

																	nitoriı Restor																			
Parameter			Ba	seline					M	Y-1			Ĺ		M	Y-2					MY	- 3	,		,		M	Y-4					M١	- 5		
Dimension and Substrate - Riffle only	Min	Mea	n Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	15.4	19.6	3 20.7	21.6	2.906	6 4	16.33	18.51	18.92	19.86	1.535	4	17.52	21.57	18.86	31.02	6.339	4	15.93	20.35	18.45	28.57	5.743	4	15.5	18.1	18.4	19.9	2.1	4						
Floodprone Width (ft)	48	149.8	8 142.5	5 266	111.4	4	48.09	157.5	158	266	104	4	48	157.5	158	266	104	4	48	157.5	158	266	104	4	48	158	158	266	104	4						
Bankfull Mean Depth (ft)	0.87	1.35	5 1.325	5 1.88	0.449	9 4	1.047	1.429	1.421	1.828	0.33	4	1.064	1.397	1.332	1.857	0.352	4	0.997	1.338	1.339	1.677	0.335	4	1.2	1.5	1.4	1.9	0.3	4						
¹ Bankfull Max Depth (ft)		2.34		2.87	0.446	6 4	1.865	2.207	2.153	2.66	0.355	4	1.96	2.565	2.675	2.95	0.429	4	1.9	2.465	2.585	2.79	0.409	4	2.1	2.7	2.9	2.9	0.4	4						
Bankfull Cross Sectional Area (ft ²)	18.9	25.28		30.6					26.92								5 7.268	4		26.33				4	20.1	26.4		30.1	4.4	4						
Width/Depth Ratio	8.16	16.0	7 15.7	24.7	7.141	4	8.931	13.66	13.37	18.98	4.166	4	9.436	16.5	15.22	26.11	7.215	4	9.498	16.54	14	28.65	8.412	4	8.2	12.7	14.1	14.3	3	4						
		7.56		5 13	5.347	4	2.945	8.376	8.158	14.24	5.443	4	2.739	6.998	6.755	11.74	3.975	4	3.014	7.242	7.375	11.21	3.703	4	3.1	8.3	8.3	13.5	4.9	4						
¹ Bank Height Ratio	0.97	0.99	3 1	1	0.015	5 4	0.687	0.901	0.958	1	0.148	4	0.871	0.92	0.904	1	0.056	4	0.912	0.946	0.938	0.995	0.04	4	1	1	1	1		4						
Profile																																				
Riffle Length (ft)	13.	7 23.1	22.9	1 36.6	6.2	17	12.96	22.04	20.37	34.75	6.42	17	15.09	27.92	26.54	44.53	8.84	17	18.51	28.18	27.68	45.62	7.72	17	8	26.3	25.4	58.7	13.4	21						
Riffle Slope (ft/ft)	(0.02	0.02	0.05	0.01	17	0.007	0.019	0.016	0.036	0.009	17	0.004	0.017	0.016	0.04	0.011	16	1.03	2.359	2.375	3.225	0.491	17	0.1	1.69	1.77	3.7	0.01	20						
Pool Length (ft)	26.8	34.2	34.3	40.8	4.7	16	25.24	34.76	32.6	63.29	9.33	17	22.54	28.63	26.33	51.15	6.87	17	21.76	28.05	27.24	37.02	4.834	17	12.4	28.4	26.7	45.5	7.8	25						
Pool Max depth (ft)	2.5	5 3.8	4	4.7	0.7	16	2.64	3.64	6.75	4.6	0.57	17	2.59	3.34	3.29	4.36	0.57	17	2.48	3.655	3.83	4.56	0.63	17	3.6	3.6	3.6	3.6								
Pool Spacing (ft)	4(56	54	71	9.1	15	38.54	57.35	57.76	74.75	10.18	16	40.01	57	57.47	72.19	9.38	16	41.41	56.93	57.59	75.03	11.04	16	23	51	50	88	16	24						
Pattern																																				
Channel Beltwidth (ft)	31.9	43.8	40.9	75.9	10.9	14		1					1		1																					
Radius of Curvature (ft)	23.7	44.6	6 42.9	66.7	12.1	13																					~									
Rc:Bankfull width (ft/ft)	1.1	2.2	2.1	66.7	0.59	13										l Pa	attern dat	a wili no	ot typica		significa				nsional	data or	profile	data								
Meander Wavelength (ft)	90	104	104	121	9.1	13											-		-								-	-								
Meander Width Ratio	1.6	2.2	2.1	2.8	0.55	14																														
Additional Reach Parameters																																				
Rosgen Classification				C4					(24					(24					С	4					C/	'E 4								
Channel Thalweg length (ft)			9	994					9	94					9	94					99	94					9	94								
Sinuosity (ft)			1	1.14					1.	14					1	.14					1.	14					1.	.14								
Water Surface Slope (Channel) (ft/ft)			0.	0105					0.0	105					0.0)117					0.0	117					0.	012								
BF slope (ft/ft)				0111						111						132					0.0	118														
³ Ri% / Ru% / P% / G% / S%	41%		57%				38%		59%				49%		51%				51%		48%				44%		56%									
³ SC% / Sa% / G% / C% / B% / Be%														11%	47%			0%		17%	52%		1%	0%		21%			2%	0						
³ d16 / d35 / d50 / d84 / d95 /											_		16.4	38.42	55.28	109.5	5 197.2		7.916	27.71	41.5	93.75	164.8		0.9	9.0	20.8	79.9	177.6							
² % of Reach with Eroding Banks															g	1%					2	%					1	%								
Channel Stability or Habitat Metric								_		_	_					_							_		_	_			_	_		_	_	_		
Biological or Other																																				

Shaded cells indicate that these will typically not be filled in.
1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.
2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table
3 = Riffe, Run, Pool, Gilde, Step, Sitt/Cay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
4. = Of value/needed only if the n exceeds 3

APPENDIX E HYDROLOGY DATA Table 12. Verification of Bankfull Events

Table 12. Verification of Bankfull Events

		9	
Date of Data Collection	Date of Occurrence	Method	Photo (if available)
September 30, 2010	September 30, 2010	Nearby NWS COOP station	
September 30, 2010	September 30, 2010	Nearby USGS Stream gauge	
July 27, 2011	May 28, 2011	Nearby NWS COOP station and site visit	Bankfull Photo 1
October 6, 2011	September 7, 2011	Nearby NWS COOP station	
1 1 1 0010		1.8 inches of rain occurred on May 22-23, 2012 as	Bankfull
July 16, 2012	May 22-23, 2012	documented at a nearby rain station*	Photo 2

Chapel Creek Restoration Site (EEP Project Number 77)

* Reported at KIGX Weather Station for Chapel Hill (Weatherunderground 2012).

Bankfull Photo 1: Evidence of overbank including wrack and debris on crest gage.

Axiom Environmental, Inc.